Direct observation of metal-insulator transition in single-crystalline germanium telluride nanowire memory devices prior to amorphization.

نویسندگان

  • Pavan Nukala
  • Rahul Agarwal
  • Xiaofeng Qian
  • Moon Hyung Jang
  • Sajal Dhara
  • Karthik Kumar
  • A T Charlie Johnson
  • Ju Li
  • Ritesh Agarwal
چکیده

Structural defects and their dynamics play an important role in controlling the behavior of phase-change materials (PCM) used in low-power nonvolatile memory devices. However, not much is known about the influence of disorder on the electronic properties of crystalline PCM prior to a structural phase-change. Here, we show that the application of voltage pulses to single-crystalline GeTe nanowire memory devices introduces structural disorder in the form of dislocations and antiphase boundaries (APB). The dynamic evolution and pile-up of APBs increases disorder at a local region of the nanowire, which electronically transforms it from a metal to a dirty metal to an insulator, while still retaining single-crystalline long-range order. We also observe that close to this metal-insulator transition, precise control over the applied voltage is required to create an insulating state; otherwise the system ends up in a more disordered amorphous phase suggesting the role of electronic instabilities during the structural phase-change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Germanium telluride nanowires and nanohelices with memory-switching behavior.

We report the synthesis of single-crystalline GeTe nanowires (NWs) and nanohelices (NHs) using a vapor transport method assisted by metal catalysts. The NWs have typical diameters of 65 +/- 20 nm and lengths reaching up to 50 mum, while NHs have an average helix diameter of 135 +/- 30 nm, with widely varying pitches. Electron microscopy and diffraction measurements show that these NWs and NHs a...

متن کامل

Transient Structures and Possible Limits of Data Recording in Phase-Change Materials.

Phase-change materials (PCMs) represent the leading candidates for universal data storage devices, which exploit the large difference in the physical properties of their transitional lattice structures. On a nanoscale, it is fundamental to determine their performance, which is ultimately controlled by the speed limit of transformation among the different structures involved. Here, we report obs...

متن کامل

Electrical wind force-driven and dislocation-templated amorphization in phase-change nanowires.

Phase-change materials undergo rapid and reversible crystalline-to-amorphous structural transformation and are being used for nonvolatile memory devices. However, the transformation mechanism remains poorly understood. We have studied the effect of electrical pulses on the crystalline-to-amorphous phase change in a single-crystalline Ge(2)Sb(2)Te(5) (GST) nanowire memory device by in situ trans...

متن کامل

One-dimensional Phase-Change Nanowires for Information Storage Application

The electrically operated phase-change random access memory (PRAM) features faster write/read, improved endurance, and much simpler fabrication as compared with the traditional transistor-based nonvolatile semiconductor memories. Low-dimensional phase-change materials in nanoscale dimensions offer advantages over their bulk or thin-film counterpart in several aspects such as reduced programmabl...

متن کامل

A Review on Disorder-Driven Metal–Insulator Transition in Crystalline Vacancy-Rich GeSbTe Phase-Change Materials

Metal-insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2014